Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 142(2): 024702, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25591372

RESUMO

Preferential and enantioselective interactions of L-/D-Phenylalanine (L-Phe and D-Phe) and butoxycarbonyl-protected L-/D-Phenylalanine (LPA and DPA) as guest with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (L-DPPC) as host were tapped by using real time Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS). Polarization-modulated FT-IRRAS of DPPC monolayers above the phenylalanine modified subphases depicted fine structure/conformation differences under considerations of controlled 2D surface pressure. Selective molecular recognition of D-enantiomer over L-enantiomer driven by the DPPC head group via H-bonding and electrostatic interactions was evident spectroscopically. Accordingly, binding constants (K) of 145, 346, 28, and 56 M(-1) for LPA, DPA, L-Phe, and D-Phe, respectively, were estimated. The real time FT-IRRAS water bands were strictly conformation sensitive. The effect of micro-solvation on the structure and stability of the 1:1 diastereomeric L-lipid⋯, LPA/DPA and L-lipid⋯, (L/D)-Phe adducts was investigated with the aid of Atom-centered Density Matrix Propagation (ADMP), a first principle quantum mechanical molecular dynamics approach. The phosphodiester fragment was the primary site of hydration where specific solvent interactions were simulated through single- and triple- "water-phosphate" interactions, as water cluster's "tetrahedral dice" to a "trimeric motif" transformation as a partial de-clusterization was evident. Under all the hydration patterns considered in both static and dynamic descriptions of density functional theory, L-lipid/D-amino acid enantiomer adducts continued to be stable structures while in dynamic systems, water rearranged without getting "squeezed-out" in the process of recognition. In spite of the challenging computational realm of this multiscale problem, the ADMP simulated molecular interactions complying with polarized vibrational spectroscopy unraveled a novel route to chiral recognition and interfacial water structure.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Membrana Celular/química , Simulação de Dinâmica Molecular , Fenilalanina/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Conformação Molecular , Fosfatos/química , Teoria Quântica , Solventes/química , Eletricidade Estática , Termodinâmica
2.
Analyst ; 139(22): 5772-80, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25279399

RESUMO

Multi-component organic interfaces with molecular-level mixing were prepared by integrating benzoic acid appended thiophene amphiphile [4-(6-(thiophene-3-carbonyloxy)hexyloxy)benzoic acid] (T6BA) and (±)-α-lipoic acid onto the Au surface. On a flat surface with infinite radii of curvature, T6BA and (±)-α-lipoic acid, endowed with chemically distinct end-groups, provided sufficient length mismatch to gain conformational entropy leading to stripe-like patterns when the immiscible ligands co-adsorbed. Good quality multi-component organic interfaces and molecular islands could be fabricated via composition variation of the participating ligands. Host-guest chemistry between benzoic acids and ß-cyclodextrin was used to confirm the molecular-level mixing. T6BA and (±)-α-lipoic acid, each being a non-specific recognition matrix for dopamine, could thus be organized into mixed molecular arrays having well defined cavities for guest inclusion. This mixed molecular array behaved as a 'recognition matrix' for dopamine (DA, 15 nm) in the presence of ascorbic acid (AA). The surface patterns described here on a flat surface should in principle be applicable to other geometrical structures like spheres and cylinders. Further, charge transfer through the T6BA self-assembled monolayers depended on the anion type present in the supporting electrolyte, monitored through cyclic voltammetry.


Assuntos
Tiofenos/química , Técnicas Eletroquímicas/métodos , Ligantes , Microscopia de Força Atômica
3.
J Biomed Nanotechnol ; 10(3): 405-14, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24730236

RESUMO

Photothermal therapy using (Near Infrared) NIR region of EM spectrum is a fast emerging technology for cancer therapy. Different types of nanoparticles may be used for enhancing the treatment. Though the treatment protocols are developed based on experience driven estimated temperature increase in the tissue, it is not really known what spatiotemporal thermal behavior in the tissue is. In this work, this thermal behavior of tissue models is investigated with and without using nanoparticles. An increased temperature inside tissue compared to surface is observed which is counter intuitive from the present state of knowledge. It is shown from fiber level microstructure that this increased temperature leads to enhanced damage at the deeper parts of biomaterials. Nanoparticles can be utilized to control this temperature increase spatially. A multiple scattering based physical model is proposed to explain this counterintuitive temperature rise inside tissue. The results show promising future for better understanding and standardizing the protocols for photothermal therapy.


Assuntos
Hipertermia Induzida/normas , Raios Infravermelhos/uso terapêutico , Fototerapia/normas , Temperatura , Ágar/química , Ágar/efeitos da radiação , Ágar/ultraestrutura , Animais , Bovinos , Colágeno/química , Colágeno/efeitos da radiação , Colágeno/ultraestrutura , Simulação por Computador , Géis , Hipertermia Induzida/efeitos adversos , Hipertermia Induzida/métodos , Fototerapia/efeitos adversos , Fototerapia/métodos
4.
J Phys Chem B ; 117(17): 5345-54, 2013 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-23534676

RESUMO

Soft molecular ellipsoids conceived from 3,4-di(dodecyloxy)benzoic acid (DDBA) amphiphile draw attention to monomer structure design, intramolecular -COOH headgroup twist (ϕ°) and cyclic-acyclic dimer switching through facial H-bond torsion (ψ°). Generically, precipitation in hydrogen bonded systems has been the prime phenomenon once the critical aggregation concentrations were reached in the bulk solution. DDBA was no exception to this generalization. It formed precipitates in chloroform and methanol with no specific geometry but with cyclic dimer motifs in them. On the contrary, surface pressure modulated interfacial aggregation with ellipsoidal geometry followed acyclic dimerization (catemer motif) with various levels of headgroup torsion, established through real-time polarization modulated infrared reflection-absorption spectroscopy (IRRAS) and density functional theory (DFT) calculations, that estimated the energy costs for these unexplored pathways. The reaction coordinates ϕ° and ψ° in consonance with 2D surface pressure modulation thus directed the shape anisotropy during the dynamic self-assembly of DDBA. Changes in subphase pH and metal ionic environment had a derogatory effect on the ellipsoid formation, the structural requirement for which strictly followed a stringent need for twin alkyl chains in an asymmetric unit cell, as 4-dodecyloxybenzoic acid (MABA) with a single alkyl chain formed exclusively spherical assemblies with no dimer modulation. The investigation thus reports unexplored energy pathways toward ellipsoidal geometry of the amphiphile in the course of its interfacial aggregation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...